
80 CHAPITRE 4. INTÉGRALES

Ainsi | ∂
n

∂nzf(x, z)| ≤ n!
rn gK+B(0,r)(x), ce qui donne le résultat voulu en prenant

comme fonction majorante gn,K = n!r−ngK+B(0,r).
Passons maintenant à la preuve de l’identité et de la formule pour n = 1.

Soit z0 ∈ O. Prenons r tel que la boule fermée de centre z0 et de rayon r soit
incluse dans O. On prend K = B(z0, r).
Posons Fθ,x(r) = f(x, z0 + reiθ). On a, pour µ-presque tout x, l’égalité (vecto-
rielle)

Fθ,x(r)− Fθ,x(0) =
Z r

0
F ′θ,x(u) du,

soit
f(x, z0 + reiθ)− f(x, z0)

reiθ
=

1

r

Z r

0

∂

∂z
f(x, z0 + ueiθ) du.

Ainsi pour tout z tel que |z − z0| ≤ r, on a����f(x, z)− f(x, z0)

z − z0

���� ≤ sup
z∈B(z0,r)

���� ∂∂z f(x, z)

���� ≤ g1,B(z0,r)
(x) µ− p.p.

On conclut alors comme précédemment avec le théorème de convergence do-
minée et une suite (zn) quelconque de limite z0 (à partir d’un certain rang,
elle prend ses valeurs dans K). On peut remarquer que la fin de la preuve
est presque identique à la preuve du théorème de dérivation sous le signe
intégrale, à la différence près qu’on a redémontré “à la main” l’inégalité des
accroissements dans le cadre du R-espace vectoriel C.

Application à la fonction Gamma

Théorème 4.22. La fonction Γ

z 7→
Z

[0,+∞[
tz−1e−t dλ(t)

définit une fonction holomorphe sur {a + ib; (a, b) ∈]0,+∞[×R}. Ses dérivées
sont données par

Γ(n)(z) =
Z

[0,+∞[
(log t)ntz−1e−t dλ(t)

Elle vérifie la relation fonctionnelle Γ(z + 1) = zΓ(z), ce qui permet de la pro-
longer en une fonction holomorphe sur C\{−n;n ∈ N}.

Démonstration. On prendO = {a+ib; (a, b) ∈]0,+∞[×R}. SoitK un compact
inclus dans O. On pose a(K) = inf{Re (z); z ∈ K}. Comme z 7→ Re (z) est
continue, l’infimum est atteint et on a a(K) > 0.
On pose maintenant M(K) = sup{Re (z); z ∈ K}, puis on considère la fonc-
tion gK(x) = ta(K)−1e−t + tM(K)−1e−t. On a déjà vu dans l’exercice sur la
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fonction Gamma réelle que gK était intégrable, et on a pour tout z ∈ K et
tout t > 0 :

|tz−1e−t| ≤ gK(t).

Avec le théorème précédent, cela nous donne l’holomorphie de la fonction
Gamma complexe. Pour z ∈ O, une intégration par parties donneZ M

0
e−ttz dt = [−tze−t]M0 + z

Z M

0
e−ttz−1 dt,

d’où Γ(z + 1) = zΓ(z) en faisant tendre M vers l’infini.
Posons Γ0(z) = Γ(z), puis pour k ≥ 0, Γk+1(z) = Γk(z+1)

z .
On montre aisément par récurrence que Γk définit une fonction holomorphe
sur Hk = {a + ib; a > −k}\{0; − 1;−2; . . . ;−k}. De manière explicite, on a
sur Hk :

Γk(z) =
Γ(z + k)

(z + k − 1)(z + k − 2) . . . z
.

Cependant pour z dans Hk, on a encore pour tout entier naturel non nul ` :

Γk+`(z) =
Γ(z + k)(z + k)(z + 1) . . . (z + k + `− 1)

(z + k + `− 1) . . . z
=

Γ(z + k)

(z + k − 1) . . . z

= Γk(z).

Finalement, les fonctions Γk coïncident et définissent une fonction holomorphe
sur ∪k≥1Hk = C\{−n;n ∈ N}.

Les conséquences sont aussi intéressantes dans le domaine réel : on en
déduit directement que la restriction de Γ à ]0,+∞[ est C∞, avec l’expression
des dérivées. En particulier, pour tout x > 0

Γ
′′
(x) =

Z
[0,+∞[

(log t)2tx−1e−t dλ(t) > 0,

et Γ est donc strictement convexe sur ]0,+∞[, et Γ′ est strictement croissante.
Comme Γ(1) = Γ(2) = 1, Γ′ s’annule en un unique point c de ]1, 2[ : Γ est
strictement décroissante sur ]0, c[, et strictement croissante sur ]c,+∞[.

Comme Γ(n+ 1) = n!, on a limx→+∞ Γ(x) = +∞.
L’inégalité Γ(x) ≥

R 1
0 t

x−1e−t dt ≥ 1
ex donne limx→0+ Γ(x) = +∞.

Exercice. Posons φ(z) =
R
R+

e−x

x−z dλ(x) et montrons que φ est holomorphe sur
C\R+. Soit K un compact de C\R+ : la fonction z 7→ d(z,R+) est continue
sur K, donc y atteint son minimum, noté εK . Comme K ne rencontre pas R+,
on a εK > 0. On peut donc appliquer le théorème avec gK(x) = e−x

εK
. Il s’agit

en fait de la transformée de Stieljès de la fonction e−x.


