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Ainsi |6% flz,2)] < Zgp +B(0,(€), ce qui donne le résultat voulu en prenant
comme fonction majorante g,, xk = nlr~"g, B0

Passons maintenant a la preuve de I'identité et de la formule pour n = 1.
Soit zp € O. Prenons r tel que la boule fermée de centre 2, et de rayon r soit
incluse dans O. On prend K = B(zo, ).
Posons Fy .(r) = f(x, 20 + re’?). On a, pour u-presque tout x, I'égalité (vecto-
rielle)

FH,w( Fez /FHI u,

soit '
[z, 20 + re’g) — f(z, 20)
retf

1 /0 0
=— | —f(z,20 +uev) du.
= 5o fz+ue)

Ainsi pour tout z tel que |z — zp| < r,ona

f(x,2) = f(x, z0)

Z — 20

0
< sup —
~ 2€B(z0,r) ‘ azf(x’ Z)

< 91 B(z0,m) (T) 1 — P-P-

On conclut alors comme précédemment avec le théoréme de convergence do-
minée et une suite (z,) quelconque de limite zy (a partir d’'un certain rang,
elle prend ses valeurs dans K). On peut remarquer que la fin de la preuve
est presque identique a la preuve du théoreme de dérivation sous le signe
intégrale, a la différence prés qu’on a redémontré “a la main” I'inégalité des
accroissements dans le cadre du R-espace vectoriel C. O

Application a la fonction Gamma
Théoréme 4.22. La fonction T’
Z / t*~ et dX(t)
+oo]

définit une fonction holomorphe sur {a + ib; (a,b) €]0,+oo[xR}. Ses dérivées
sont données par

T () = / (log £)"t*~Le~t dA(1)
[0,400]

Elle vérifie la relation fonctionnelle I'(z + 1) = zI'(z), ce qui permet de la pro-
longer en une fonction holomorphe sur C\{—n;n € IN}.

Démonstration. On prend O = {a+ib; (a,b) €]0,400[xR}. Soit K un compact
inclus dans O. On pose a(K) = inf{Re (2);z € K}. Comme z — Re (z) est
continue, I'infimum est atteint et on a a(K) > 0.

On pose maintenant M (K) = sup{Re (z2); z € K}, puis on considere la fonc-
tion gx(z) = toK)~le=t 4 ¢MK)=le=t On a déja vu dans l'exercice sur la
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fonction Gamma réelle que gx était intégrable, et on a pour tout z € K et
toutt > 0 :

[t te ™t < gk ().

Avec le théoréme précédent, cela nous donne '’holomorphie de la fonction
Gamma complexe. Pour z € O, une intégration par parties donne

M M
/ et dt = [—t7e ) + z/ e tt* 1 dt,
0 0

dou I'(z + 1) = 2I'(2) en faisant tendre M vers l'infini.

Posons I'y(z) = I'(2), puis pour k > 0, 'y +1(2) = F’“(ZH)

On montre aisément par récurrence que I';, définit une fonct1on holomorphe
sur H, = {a + ibja > —k}\{0: — 1;—2;...; —k}. De maniére explicite, on a
sur Hy, :

I'(z+k)

Fi(z) = (z+k—-1D(z+k—-2)...2

Cependant pour z dans Hy, on a encore pour tout entier naturel non nul ¢ :

IF'z+k)(z+Ek)(z+1)...(2+k+(-1) I'(z+k)
Lrte(2) = =
(z+k+0-1)...z (z+k—-1)...z
Finalement, les fonctions I'j, coincident et définissent une fonction holomorphe
sur UkZIHk = (C\{—TL; n e } ]

Les conséquences sont aussi intéressantes dans le domaine réel : on en
déduit directement que la restriction de I" a ]0, +oo] est C*°, avec I'expression
des dérivées. En particulier, pour tout z > 0

I (z) = (logt)?t* e~ dA(t) > 0,
[0,400[
et I' est donc strictement convexe sur |0, +o0o[, et I' est strictement croissante.
Comme I'(1) = I'(2) = 1, I s’annule en un unique point ¢ de ]1,2[ : T est
strictement décroissante sur |0, c[, et strictement croissante sur ]c, +o00].

Comme I'(n + 1) =nl,ona hmgHJroo I'(z) = +o0.

Linégalité T'(x) > [y t*~le~t dt > L donne lim,_,+ I'(z) = +oc.

Exercice. Posons ¢(z) = [, = ﬁ d)\( ) et montrons que ¢ est holomorphe sur
C\R;. Soit K un compact de C\Ry : la fonction z — d(z,Ry) est continue
sur K, donc y atteint son minimum, noté ¢x. Comme K ne rencontre pas R,
on a ex > 0. On peut donc appliquer le théoreme avec gx (r) =
en fait de la transformée de Stieljes de la fonction e *.




